3.7.14 \(\int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [614]

3.7.14.1 Optimal result
3.7.14.2 Mathematica [A] (verified)
3.7.14.3 Rubi [A] (verified)
3.7.14.4 Maple [B] (warning: unable to verify)
3.7.14.5 Fricas [B] (verification not implemented)
3.7.14.6 Sympy [F(-1)]
3.7.14.7 Maxima [F]
3.7.14.8 Giac [F(-2)]
3.7.14.9 Mupad [F(-1)]

3.7.14.1 Optimal result

Integrand size = 35, antiderivative size = 239 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {i a-b} (i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {\sqrt {i a+b} (i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 (A b+3 a B) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{3 a d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{3 d} \]

output
(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a 
-b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+(I*A+B)*arctanh((I*a+b)^(1/2 
)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)*cot(d*x+c)^(1/2)* 
tan(d*x+c)^(1/2)/d-2/3*A*cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^(1/2)/d-2/3*(A* 
b+3*B*a)*cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/a/d
 
3.7.14.2 Mathematica [A] (verified)

Time = 2.02 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.90 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\cot ^{\frac {3}{2}}(c+d x) \left (-3 \sqrt [4]{-1} a \sqrt {-a+i b} (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \tan ^{\frac {3}{2}}(c+d x)+3 (-1)^{3/4} a \sqrt {a+i b} (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \tan ^{\frac {3}{2}}(c+d x)-2 \sqrt {a+b \tan (c+d x)} (a A+(A b+3 a B) \tan (c+d x))\right )}{3 a d} \]

input
Integrate[Cot[c + d*x]^(5/2)*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]) 
,x]
 
output
(Cot[c + d*x]^(3/2)*(-3*(-1)^(1/4)*a*Sqrt[-a + I*b]*(I*A + B)*ArcTan[((-1) 
^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Tan[c 
+ d*x]^(3/2) + 3*(-1)^(3/4)*a*Sqrt[a + I*b]*(A + I*B)*ArcTan[((-1)^(1/4)*S 
qrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Tan[c + d*x]^(3 
/2) - 2*Sqrt[a + b*Tan[c + d*x]]*(a*A + (A*b + 3*a*B)*Tan[c + d*x])))/(3*a 
*d)
 
3.7.14.3 Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.02, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4729, 3042, 4091, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{5/2} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\tan (c+d x)^{5/2}}dx\)

\(\Big \downarrow \) 4091

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3} \int -\frac {-2 A b \tan ^2(c+d x)-3 (a A-b B) \tan (c+d x)+A b+3 a B}{2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \int \frac {-2 A b \tan ^2(c+d x)-3 (a A-b B) \tan (c+d x)+A b+3 a B}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \int \frac {-2 A b \tan (c+d x)^2-3 (a A-b B) \tan (c+d x)+A b+3 a B}{\tan (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {2 \int \frac {3 (a (a A-b B)+a (A b+a B) \tan (c+d x))}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}\right )-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {3 \int \frac {a (a A-b B)+a (A b+a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}\right )-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {3 \int \frac {a (a A-b B)+a (A b+a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}\right )-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {1}{2} a (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {1}{2} a (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}\right )\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a-i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a (a+i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a+i b) (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a (a-i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a-i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a (a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {2 (3 a B+A b) \sqrt {a+b \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a (a-i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a}\right )\right )\)

input
Int[Cot[c + d*x]^(5/2)*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*A*Sqrt[a + b*Tan[c + d*x]])/(3* 
d*Tan[c + d*x]^(3/2)) + ((-3*((a*(a + I*b)*(A + I*B)*ArcTan[(Sqrt[I*a - b] 
*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a*(a 
- I*b)*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan 
[c + d*x]]])/(Sqrt[I*a + b]*d)))/a - (2*(A*b + 3*a*B)*Sqrt[a + b*Tan[c + d 
*x]])/(a*d*Sqrt[Tan[c + d*x]]))/3)
 

3.7.14.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4091
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 
 1)*(a^2 + b^2))), x] + Simp[1/(b*(m + 1)*(a^2 + b^2))   Int[(a + b*Tan[e + 
 f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[b*B*(b*c*(m + 1) + a*d*n) 
+ A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(m + 1)*Tan 
[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ[m] || Integers 
Q[2*m, 2*n])
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.14.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.37 (sec) , antiderivative size = 2181430, normalized size of antiderivative = 9127.32

\[\text {output too large to display}\]

input
int(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)
 
output
result too large to display
 
3.7.14.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8070 vs. \(2 (191) = 382\).

Time = 1.39 (sec) , antiderivative size = 8070, normalized size of antiderivative = 33.77 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.14.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(5/2)*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 
output
Timed out
 
3.7.14.7 Maxima [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*cot(d*x + c)^(5/2) 
, x)
 
3.7.14.8 Giac [F(-2)]

Exception generated. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.7.14.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

input
int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)
 
output
int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2), x)